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Abstract. We study the singular behaviour occurring in de( q ) / a q  of the multifractal 
spectrum for the current distribution in random resistor networks. The singular behaviour 
may be understood as the divergent behaviour of specific heat in thermodynamic phase 
transition. d o (  q ) / a q  shows a peak with the width qo(L) < q < q c ( L ) ,  and the height of 
which diverges as the system size L increases. However the nature of the singular behaviour 
in de( q ) / J q  is very unusual compared with that of the ordinary phase transition in the 
following ways. First, the width of the peak becomes broader, rather than narrower, with 
the increasing system size L, because qo( L)  + -m and qc( L) --t 0 as L + m. Second, the 
singularities at q=qo and q = qc are of different types. The singularity at q = 90 is of 
power-law type such as -Ld‘”””’”’ log L, and the singularity at q = qc is of logarithmic 
type such as -(log L)”” ’ ,  where d is spatial dimension and m is measured to be -1.633i 
0.006. 

Recently, breakdown of multifractal behaviour has drawn much attention [ 1-41. For 
example, moments of the current distribution in random resistor networks ( R R N )  [5] 
and moments of the probability distribution in diffusion-limited aggregation ( DLA) [6] 
exhibit multifractal behaviour for positive moments. But the multifractal behaviours 
in R R N  and DLA break down in a certain range of negative moments. The breakdown 
phenomenon is largely attractive, analogous to a thermodynamic phase transition 
[2,3,7], which will be discussed below. 

The multifractal formulation [8] for moments of the current distribution in R R N  is 
defined as 

M, ( i 4, = n ( i ) i - A ( q ) L- 7(  I 
log i 

where L is the system size, n ( i )  is the current distribution, and q represents moment. 
The multifractal spectrum is analysed by using the conventional formalism such as 

The mathematical form of (1) looks similar to a thermodynamic partition function, 
which leads to the analogy that Mq corresponds to a partition function; q corresponds 
to the inverse temperature: ~ ( q )  and a ( q )  represent a free energy and an internal 
energy respectively; specific heat is associated with a m (  q) /aq .  
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The multifractality means that T( q )  and C Y (  q )  are independent of L, and which 
occurs in positive moments. However, that T (  q )  and a (  q )  are independent of L does 
not appear in a whole range of moments. But they depend on L in a certain range of 
negative moments, which implies the occurrence of breakdown of the multifractal 
behaviour. In a previous work [9], by using the extreme statistics idea [lo], it was 
found that there exist distinct critical values qc,  qo ( qc> qo) such that only for q > qc,  
the size-independent behaviour appears. Physically qo is originated from the ultraviolet 
cut-off, which is due to the smallest current over all configurations. The size-dependent 
behaviour of qc( L )  and qo(L)  was derived explicitly, in which qo( L )  + -CO and qc( L )  + 0 
as L+w.  Accordingly, the phase transition occurring at q=qo(L)  was regarded as a 
trivial one in the thermodynamic limit, L +  CO. However the phase transition occurring 
at  q=qc(L)  was not examined in the previous work. This transition is worth noting by 
showing that the specific heat also diverges at  finite value of moments q = qc even in 
the thermodynamic limit. Furthermore the origin of the singularity at q = qc is quite 
different from the one at q = qo. While the latter is due to finite size scaling, the former 
is due to the intrinsic property of the distribution function. Thus the main purpose of 
this letter is to examine a new singular behaviour at q = q c  as a complement of the 
previous work [9]. 

We begin by recalling the explicit form of the size-dependent behaviour for qo(L)  
and qc(L)  derived in [9], 

and  

q c ( L )  - -(log /!,)-I/‘” (4) 

where m is measured to be m = 1.633 * 0.006 and d is spatial dimension. The explicit 
form of T (  q ) ,  C Y (  q ) ,  and f ( a )  is also derived as follows. For q < qo(L)  

But when q > qc(L) ,  T (  q )  and C Y (  q )  are independent of the system-size L. 

of da( q) /dq,  which corresponds to the specific heat in the analogy, as 
For the interval qo( L )  < q < qc( L ) ,  we can easily obtain the size-dependent behaviour 

( 7 )  

Therefore the specific heat increases with increasing L when m > 1, and eventually it 
diverges as L + CO. Since the specific heat equals to zero in the regions, q> q, and q < qo 
and diverges in the interval, two singular behaviours occur around q = qc and q = q,,. 
By inserting ( 3 )  and (4) into ( 7 ) ,  we can find the two singularities. It turns out that 
the nature of the singularities are quite different from each other. One singularity is 
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of power-law type such as - Ld‘2-m)” log L at q + qo, and another is logarithmic such 
as -(log L)’” at q + qc.  This asymmetric behaviour is very unusual compared with 
that of the ordinary thermodynamic phase transition. Furthermore the width of the 
peak, qo < q < qc ,  becomes broader instead of narrower as the system size L increases. 
This type of phase transition is firstly observed in this work. So far, the above discussion 
is based on R R N  of which the Weibull constant is 1 < m < 2 .  However if m = 2 ,  then 
the power-law singularity would disappear and would change to the logarithmic one. 
Thus the singularities of each side of the peak reduce to be of the same type. Finally 
it is worth mentioning that the broadening behaviour of the width appears only when 
m >  1. 

In summary, we have considered the unusual phase transition occurring in the 
multi-fractal formulation for the current distribution in random resistor networks. The 
specific heat, aa( q ) / d q ,  shows a peak which increases rapidly across q + qc( L )  and 
decreases rapidly across q + qo(L)  as q decreases. The width of the peak becomes 
broader as the system size increases, which is anomalous to the usual behaviour that 
the width becomes narrower. Moreover, the nature of singularities on each side of the 
peak are quite different from each other. One is of power-law type with logarithmic 
correction and another is of logarithmic type. 
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